Stata Workshop: DAY 2

Taisei NODA

Graduate School of Economics, Osaka University

June 18, 2019

Taisei NODA (GSE)

Overview

- Set Up
- 2 Import Data
- Output Table
- 4 Visualization
- Data Analysis

Routine Work

- Let's begin by the "routine work"
- Change the working directory to your personal folder (e.g. "L:")
- Do not forget to open your log file
- Today we are going to work on "wb.csv".
 - This data comes from Education Statistics in 2015 by World bank.
 - I downloaded the original data from DataBank and modify it. This data is public data.
 - Make sure you have downloaded the csv file into the working directory.
 - Use dir

See If You Have the Dataset: dir

```
. dir
902.3k 10/20/14 13:30
                       LBftf@fCf<f fbfN2 v209.exe
 <dir> 12/25/17 8:17
                       LBftf@fCf<f fbfN2 Readme
 <dir> 3/20/19 18:27
                       System Volume Information
1008.1k 3/26/19 19:32
                       rufus-3.4p.exe
1802.7M 3/26/19 19:34
                       ubuntu-ja-18.04.1-desktop-amd64.iso
  0.5k 5/08/19 18:16
                       LB FileLock2 dat
 14.3M
         5/20/19 17:35
                       fj.lock
 <dir> 5/08/19 14:55 41
  4.8k 6/17/19 10:18 wb.csv
 <dir> 6/17/19 12:32
 <dir> 6/17/19 12:33
                       temp
  1.1k
         6/17/19 13:08
                       stata2019 day2.log
```

Import Data

- To import csv file, we use import delimited
- varnames(1) option specifies the row of variable names
- For dta file, we use "use....,clear" command
- For excel file(.xlsx), import excel command is available
 - see help import excel

Replace Parts of Data

- Today, we will use the variables of "countryname, countrycode, var1, var3, var4, var5, var6, var7".
- We can choose variables of interest by drop and keep

Why No Observation?

. su

Max	Min	Std. Dev.	Mean	Obs	Variable
				0	countryname
				0	countrycode
				0	varl
				0	var3
570.706	324.0882	56.75294	460.0912	71	var4
542.0488	338.6303	53.374	462.7892	71	var5
				0	var6
1	0	.4007036	.1971831	71	var9

Why Colored Red?

	countryname	countrycode	var1	var3	var4	var5	var6	var9
1	Albania	ALB	.74197	90.54527	412.8957	406.6567	11800	0
2	Algeria	DZA			356.8391	348.7972	14260	0
3	Argentina	ARG	2.38742	89: 85171	407.4132	427.6997	20030	0
4	Australia	AUS	1.62449	92.71159	495.3505	508.7095	45230	0
5	Austria	AUT	2.17453	84.95183	500.7409	490.9135	49390	0
6	Belgium	BEL	***	85.47176	512.7295	507.1101	45330	0
7	Brazil	BRA	2.58198	83.31311	371.3515	404.8044	15360	0
8	Bulgaria	BGR		95.81945	440.8897	436.6862	17820	0
9	Canada	CAN		99.94666	517.6515	531.3152	43720	0
10	Chile	CHL	1.43118	77.97418	421.6818	460.5004	22290	0
11	China	CHN			537.6656	501.1963	14440	1
12	Colombia	COL	1.59344	77.33186	386.3858	425.2064	13530	0
13	Costa Rica	CRI	2.38546	77.60461	397.616	426.7143	15050	0
14	Croatia	HRV	***	97.60586	462.2638	488.5583	22860	0
15	Cyprus	CYP	2.63435	95.32878	437.5244	446.8593	31980	0
16	Czech Republic	CZE	1.72534	84.94709	494.1965	492.3631	31420	0
17	Denmark	DNK		91.7673	513.4732	505.4148	50360	0
18	Dominican Republic	DOM	1.2897	61.07617	324.0882	353.7894	13700	0
19	Estonia	EST	1.35091	91.43698	520.6267	522.5063	28570	0
20	Finland	FIN	2.65718	96.59672	513.8009	534.3968	42530	0

Change String to Numeric: destring

- We can transform string to numeric by destring
- Before do that, you need to replace all the text with numeric values or missing(".")
- Now var1, var3 and var 6 have ".." instead of ".". Stata recognizes ".." as string.
- replace changes row values
- To avoid repetitive task, we use "loop syntax"

Loop: foreach

```
*Loop: same operation for each variable in the variable list 

foreach var of varlist varl var3 var6 {
    replace `var'="." if `var'==".."
    }
    destring _all,replace
```

- This command executes replacement of ".." with "." for each variable in the "varlist". i.e. var1, var3, and var6.
- Then, run destring

Label for a Variable: label variable

You can put labels for variables by label variable

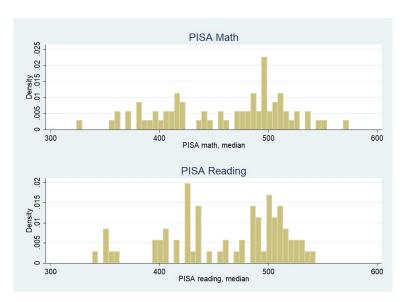
	Variable	Label				
	countryname	UIDS-Willer				
4	countrycode					
	expend Government expenditure on education as % of GDP (9					
	enroll	Net enrollment rate(%), secondary				
1	math	PISA math, median				
1	read	PISA reading, median				
(gni_pc	GNI per capita				
	asia	Asia dummy				

Label for Values

- Also, you can put labels for each value
- ullet e.g. "yes" if the value =1, "no" if the value =0

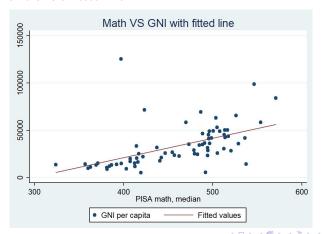
11	math	read	gni_pc	asia	
1527	412.8957	406.6567	11800	no	
	356.8391	348.7972	14260	no	
171	407.4132	427.6997	20030	no	
L159	495.3505	508.7095	45230	no	
183	500.7409	490.9135	49390	no	
7176	512.7295	507.1101	45330	no	
L311	371.3515	404.8044	15360	no	
L945	440.8897	436.6862	17820	no	
1666	517.6515	531.3152	43720	no	
7418	421.6818	460.5004	22290	no	
	537.6656	501.1963	14440	yes	
3186	386.3858	425.2064	13530	no	
)461	397.616	426.7143	15050	no	
0586	462.2638	488.5583	22860	no	
2878	437.5244	446.8593	31980	no	
1709	494.1965	492.3631	31420	no	

Output Summary Tables: outreg2


- outreg2 provides a fast and easy way to produce an illustrative table of outputs.
- This is user-written file (we call "ado file"), and then not pre-installed. You need to install by yourself.
- ssc install outreg2

Summary Table by outreg2

Your tabel should be saved in your working directory


	(1)	(2)	(3)	(4)	(5)
VARIABLES	N	mean	sd	min	max
expend	48	1.875	0.615	0.742	4.724
enroll	58	90.52	7.939	61.08	99.95
math	71	460.1	56.75	324.1	570.7
read	71	462.8	53.37	338.6	542.0
gni_pc	70	33,486	22,307	5,430	125,200
asia	71	0.197	0.401	0	1

Histogram

Scatter Plot: twoway scatter

- You can draw scatter plot by twoway scatter
- Also, you can add fitted line on the figure
 - "||" combines two types of graphs into one figure
 - "Ifit" draws a fitted line

Correlation:corr

. corr gni_pc math read enroll expend
(obs=44)

Ī	gni_pc	math	read	enroll	expend
gni_pc	1.0000				(4)
math	0.7481	1.0000			
read	0.6969	0.9454	1.0000		
enroll	0.3607	0.6691	0.6445	1.0000	
expend	0.1190	0.1299	0.1829	0.2355	1.0000

T Test:ttest

• ttest performs group mean comparison, so called t-test

. ttest math, by (asia)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
no	57	454.835	7.112264	53.69641	440.5874	469.0826
yes	14	481.4914	17.54294	65.63965	443.5922	519.3906
combined	71	460.0912	6.735335	56.75294	446.658	473.5244
diff		-26.6564	16.74593		-60.06361	6.750819

 $\label{eq:diff} \begin{array}{lll} \text{diff} = \text{mean} (\text{no}) & -\text{mean} (\text{yes}) & \text{t} = -1.5918 \\ \text{Ho: diff} = 0 & \text{degrees of freedom} = & 69 \end{array}$

Linear Regression (OLS):reg

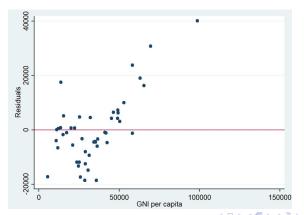
reg gni_pc math

Source	SS	df	MS
Model	9.5355e+09	1	9.5355e+09
Residual	2.4798e+10	68	364671472
Total	3.4333e+10	69	497581844

Number of obs	=	7
F(1, 68)	=	26.1
Prob > F	=	0.000
R-squared	=	0.277
Adj R-squared	=	0.267
Root MSE	=	1909

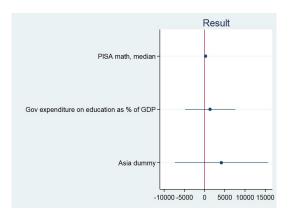
gni_pc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
math	205.8102	40.2482	5.11	0.000	125.4962	286.1243
cons	-61150.79	18647.44	-3.28	0.002	-98361.19	-23940.4

- reg command has various post estimation
 - outreg2
 - predict double resid,residual
 - coefplot
 - etc


19 / 23

Illustrative Table of Regression by outreg2

T		1				
2		(1)	(2)			
3	VARIABLES	gni_pc	gni_pc			
4						
5	math	205.8***	258.5***			
6		(40.25)	(35.68)			
7	asia		4,157			
8			(5,712)			
9	expend		1,398			
10			(3,081)			
11	Constant	-61,151***	-89,337***			
12		(18,647)	(18,065)			
13						
14	Observations	70	47			
15	R-squared	0.278	0.567			
16	Standard errors in parentheses					
17	*** p<0.01, ** p	<0.05, * p<0.1				
10						


Calculating Residuals: predict double resid, residuals

- predict double resid, residuals
 - resid names the residuals. Any name is fine.
 - Note: You can also calculate predicted values by this command. See the help file.
- draw scattering plot to see the distribution of the residuals

Visualization of Regression Results: coefplot

 coefplot plots point estimated coefficients and the confidence intervals.

Save Data:save

- save
- saveold command saves your dta file in older version (e.g. stata 12)
- Note that Stata has often compatibility problem. Older version sometimes does not work for dta file generated by the newest version (Stata 13 cannot open dta file generated by Stata 15).